Une brève à propos des indices musicaux III

Je poursuis dans cet article l’étude de l’application \sharp : \xi\in E^*\mapsto \xi^\sharp\in E associée à une forme bilinéaire non dégénérée entamée dans deux billets antérieurs. Après avoir présenté ici le cas des produits scalaires et celui des formes symplectiques, j’aborde à présent celui des formes symétriques de signature quelconque. Je vous réfère à ces articles pour la définition de l’application \sharp.

Ici, E est un espace vectoriel réel de dimension finie n >1. Nous noterons g une forme bilinéaire symétrique non dégénérée de signature (p,q) de E. Cela signifie qu’il existe des bases de celui-ci dans lesquelles g est représenté par la matrice diagonale

\Delta:=\mathrm{diag}(\underbrace{1,\ldots,1}_{p},\underbrace{-1,\ldots,-1}_{q})=\mathrm{diag}(I_p,-I_q)

I_k désigne la matrice unité de taille k. Nous dirons de ces bases qu’elles sont adaptées à g.

Naturellement, si (p,q)=(n,0), g est un produit scalaire et, si (p,q)=(0,n), c’est -g qui en est un. Nous allons dès lors supposer que pq\neq 0 puisque les autres cas sont déjà traités.

Le résultat est le suivant

Soient \xi\in E^*\setminus\{0\}, \mathbf x\in E et deux entiers strictement positifs p et q tels que p+q=n. Il existe une forme bilinéaire symétrique non dégénérée de signature (p,q) telle que \mathbf x=\xi^\sharp si, et seulement si, \mathbf x\neq 0.

Ma démonstration est techniquement un peu lourde sans être pour autant conceptuellement difficile : contrairement aux cas des produits scalaires et des formes symplectiques, qui se traitent de façon assez triviale, je n’ai rien trouvé d’immédiat.

On vérifie facilement que si les composantes de \xi dans la base duale d’une base adaptée à g sont \mu=(\mu_1,\ldots,\mu_n), alors celles de \xi^\sharp dans la base adaptée sont u=(\mu_1,\ldots,\mu_p,-\mu_{p+1},\ldots,-\mu_n). Autrement dit u=\Delta \mu(*).

En particulier, si \xi n’est pas nul, alors \xi^\sharp ne l’est pas non plus, ce que nous savions déjà puisque \sharp est une bijection linéaire.

Etablir la réciproque, i.e. que si \mathbf x n’est pas nul, il s’écrit \xi^\sharp pour une certaine forme g de signature (p,q), revient à montrer qu’il existe des bases de E pour lesquelles u=\Delta \mu, où u sont les composantes de \mathbf x dans la base et \mu sont celles de \xi dans la base duale.

Nous allons faire cela en partant d’une base (plus ou moins) quelconque \mathbf f=(\mathbf f_1,\ldots, \mathbf f_n) de E et en trouvant une matrice de changement de bases S qui la transforme en une base \mathbf e=(\mathbf e_1,\ldots, \mathbf e_n) ayant la propriété en question(**).

Les relations liant les différentes composantes de \mathbf x et \xi sont v=Su et \mu=\tilde{S}\nu. Par conséquent, il s’agit d’établir l’existence d’une matrice non singulière S telle que

(1) v=S\Delta\tilde{S}\nu

Assez naturellement, nous allons écrire S sous la forme \begin{pmatrix}A&B\\C&D\end{pmatrix}A est une matrice carrée de taille p, D une de taille q, B est une matrice à p lignes et q colonnes et C une matrice à q lignes et p colonnes. On a alors

S\Delta\tilde{S}=\begin{pmatrix}A\tilde{A}-B\tilde{B}&A\tilde{C}-B\tilde{D}\\C\tilde{A}-D\tilde{B}&C\tilde{C}-D\tilde{D}\end{pmatrix}

La solution que je propose repose sur une discussion basée sur le signe de \xi(\mathbf x); elle montre bien, techniquement du moins, pourquoi l’hypothèse pq\neq 0 fait marcher les choses.

\boxed{\xi(\mathbf x)>0}

Puisque \xi(\mathbf x)\neq 0, on a E=\ker\xi\oplus\mathbf R\mathbf x. On peut donc choisir une base \mathbf f pour laquelle \mathbf f_1=\mathbf x et, si (\varphi^1,\ldots,\varphi^n) est sa base duale, \xi=\xi(\mathbf x)\varphi^1. Pour cette base, v=\overrightarrow{\mathbf e}_1:=(1,0,\ldots,0) et \nu=\xi(\mathbf x)\overrightarrow{\mathbf e}_1. La condition (1) exprime alors le fait que \overrightarrow{\mathbf e}_1 est un vecteur propre de valeur propre 1/\xi(\mathbf x) de la matrice S\Delta\tilde{S}.

Nous allons prendre B=0, C=0, D=I_q et

A=\mathrm{diag}(\frac{1}{\sqrt{\xi(\mathbf x)}},I_{p-1})

Avec ces choix, on a

S\Delta\tilde{S}=\begin{pmatrix}\frac{1}{\xi(\mathbf x)}&0&0\\0&I_{p-1}&0\\0&0&-I_q\end{pmatrix}

qui répond bien à la question.

\boxed{\xi(\mathbf x)<0}

Cette fois, nous choisissons \mathbf f pour que v=\overrightarrow{\mathbf e}_n:=(0,\ldots,0,1) et \xi=\xi(\mathbf x)\varphi^n. C'est alors \overrightarrow{\mathbf e}_n qui est un vecteur propre de valeur propre 1/\xi(\mathbf x) de S\Delta\tilde{S}.

Nous prenons encore B=0 et C=0 mais, en quelque sorte, nous inversons les rôles de A et de D puisque nous posons A=I_p et

D=\mathrm{diag}(I_{q-1},\frac{1}{\sqrt{-\xi(\mathbf x)}})

Cette fois,

S\Delta\tilde{S}=\begin{pmatrix}I_p&0&0\\0&-I_{q-1}&0\\0&0&\frac{1}{\xi(\mathbf x)}\end{pmatrix}

qui répond de nouveau à la question.

\boxed{\xi(\mathbf x)=0}

Ce cas est un peu plus compliqué que les deux précédents. Il va se subdiviser en deux sous-cas.

  • \boxed{p\geqslant q}
    Nous choisissons dans ce cas \mathbf f de manière telle que \mathbf x=\mathbf f_1 et \xi=\varphi^n. Il suffit pour cela de prendre une base (\mathbf x=\mathbf f_1,\ldots,\mathbf f_{n-1}) de \ker \xi et un élément \mathbf f_n de E tel que \xi(\mathbf f_n)=1 (il en existe puisque \xi n’est pas nul).

    Les conditions imposées à S sont alors(***)

    \begin{cases}(A\tilde{C}-B\tilde{D})\overrightarrow{\mathbf e}^{(q)}_q=\overrightarrow{\mathbf e}^{(p)}_1\\(C\tilde{C}-D\tilde{D})\overrightarrow{\mathbf e}^{(q)}_q=0\end{cases}

    On voit facilement que le choix suivant fournit une matrice non singulière S vérifiant ces conditions : A=I_p, D=I_q, B=0, et

    C=\begin{pmatrix}0&I_{q-1}&0\\1&0&0\end{pmatrix}

    (On notera, concernant C qui doit comporter p colonnes, que ce choix est possible vu que p\geqslant q.)

  • \boxed{p<q}
    Ici, d'une certaine façon, on échange les rôles tenus dans le cas précédent par les indices 1 et n et les matrices B et C. En détails, on choisit cette fois \mathbf f pour que \mathbf x=\mathbf f_n et \xi=\varphi^1 ce qui impose à S de vérifier les relations

    \begin{cases}(A\tilde{A}-B\tilde{B})\overrightarrow{\mathbf e}^{(p)}_1=0\\(C\tilde{A}-D\tilde{B})\overrightarrow{\mathbf e}^{(p)}_1=\overrightarrow{\mathbf e}^{(q)}_q\end{cases}

    Pour que ce soit le cas, il suffit de prendre A=I_p et D=I_q puis C=0 et

    B=\begin{pmatrix}0&0&1\\0&I_{p-1}&0\end{pmatrix}

Vu sa taille, cet article n’est pas vraiment « une brève » mais je lui ai conservé cette dénomination en raison de sa parenté avec les deux articles mentionnés en début de texte.

Je suis d’ailleurs un peu surpris par la difficulté technique de la preuve ci-dessus. Peut-être existe-t-il une approche plus conceptuelle et concise. J’y réfléchirai et reste ouvert à toute suggestion.

😉

––––––––––
(*) Les n-upples tels que u, \mu, sont tantôt horizontaux (dans le corps du texte, généralement) tantôt verticaux, dans des égalités matricielles le plus souvent. Je ne préciserai pas les choses à chaque occasion, espérant que le contexte lève toute ambiguïté.

(**) Pour que les choses soient bien claires, je précise que la matrice S est celle pour laquelle

\forall l\in\{1,\ldots,n\},\quad \mathbf e_l=\sum\limits_{k=1}^nS_l^k\mathbf f_k

De plus, on notera si nécessaire u et \mu (respectivement v et \nu) les vecteurs des composantes de \mathbf x et \xi dans la base \mathbf e (respectivement \mathbf f) et sa base duale.

(***) Je désigne par \overrightarrow{\mathbf e}^{(k)}_l l’élément de \mathbf R^k dont la seule composante non nulle vaut 1 et occupe la place l.

Publicités