Une remarque à propos de certaines séries de puissances I

On rencontre assez régulièrement le problème de calculer des séries de la forme

\displaystyle \mathscr S_P(x)=\sum_{k=0}^\infty P(k)x^k

P\in\mathbf K[t] est un polynôme à coefficients dans \mathbf K\in\{\mathbf R,\mathbf C\}.

Cette famille de séries inclut la célèbre série géométrique \sum_{k=0}^\infty x^k=\frac 1{1-x} et nous allons montrer que

(1) Pour tout polynôme P de degré n\in\mathbf N, il existe un seul polynôme Q de degré n+1 s’annulant en 0 et tel que \displaystyle \mathscr S_P(x)=Q\left(\frac 1{1-x}\right).

L’unicité de Q est évidente et nous n’y reviendrons pas. Pour le reste, la propriété (1) va résulter de quelques faits simples que nous allons passer en revue.

Une formule pour les puissances de la série géométrique

Il s’agit de la formule

\displaystyle \forall n\in\mathbf N,\quad\sum_{k=0}^\infty{n+k\choose n}x^k=\frac{1}{(1-x)^{n+1}}

Elle résulte immédiatement des deux suivantes

\displaystyle \frac{d^n}{dx^n}\frac 1{1-x}=\frac{n!}{(1-x)^{n+1}}\quad \& \quad\frac{d^n}{dx^n}\frac 1{1-x}=\sum_{k=0}^\infty\frac{(n+k)!}{k!}x^k

qui sont très faciles à démontrer par récurrence sur n (je ne vais pas détailler ces vérifications).

Une base de l’espace des polynômes

Les polynômes e_n\in\mathbf K[t], n\in \mathbf N, définis par e_0(t)=1 et, pour n>0, par e_n=\frac 1{n!}(t+n)(t+n-1)\cdots(t+1) forment une base de \mathbf K[t].

En effet, e_n(t)-\frac{t^n}{n!} est une somme de termes de degrés strictement plus petits que n. Ainsi, la matrice qui exprime les polynômes e_n dans la base canonique 1, t, t^2, \ldots, t^n,\ldots est triangulaire inférieure et sa diagonale est \mathrm{diag}(\frac 1{0!},\frac 1{1!}, \ldots, \frac 1{n!}, \ldots). Elle est donc inversible.

Preuve de la propriété (1)

Soient un polynôme P\in\mathbf K[t] de degré n et \sum_{i=0}^np_ie_i sa décomposition selon la base (e_0,e_1,\ldots, e_n,\ldots). On a

\displaystyle \mathscr S_P(x)=\sum_{i=0}^np_i\sum_{k=0}^\infty e_i(k)x^k=\sum_{i=0}^np_i\sum_{k=0}^\infty{i+k\choose i}x^k=\sum_{i=1}^{n+1}\frac{p_{i-1}}{(1-x)^i}

car pour tous n,k\in \mathbf N, e_n(k)={n+k\choose n}. D’où la propriété.

Les séries \mathscr S_r

Lorsque P(t)=t^r, je note \mathscr S_r la série \mathscr S_P. Je note aussi \xi_r l’unique polynôme prévu par la propriété (1), c’est-à-dire le polynôme de degré r+1 qui s’annule en 0 et qui est tel que

(2) \displaystyle \mathscr S_r(x)=\sum_{k=0}^\infty k^rx^k=\xi_r\left(\frac 1{1-x}\right)

Les polynômes \xi_r vérifient une relation de récurrence qui permet de calculer les premiers facilement « à la main » et, de toute façon, d’en programmer le calcul à l’aide d’un logiciel de calcul formel(*).

Les polynômes \xi_r sont univoquement déterminés par les conditions \xi_0(t)=t et

(3) \forall r\in\mathbf N,\quad \xi_{r+1}(t)=t(t-1)\xi'_r(t)

Pour obtenir cette relation, dérivons les membres extrêmes de (2) par rapport à x. On a

\displaystyle \mathscr S'_r(x)=\sum_{k=1}^\infty k^{r+1}x^{k-1}=\frac 1x\sum_{k=1}^\infty k^{r+1}x^k=\frac 1x\mathscr S_{r+1}(x)

et

\displaystyle \left[\xi_r\left(\frac 1{1-x}\right)\right]'=\frac 1{(1-x)^2}\xi'_r\left(\frac 1{1-x}\right)

de sorte que

\displaystyle \frac 1x\xi_{r+1}\left(\frac 1{1-x}\right)=\frac 1{(1-x)^2}\xi'_r\left(\frac 1{1-x}\right)

On obtient alors (3) en effectuant le changement de variable t=\frac 1{1-x} dans cette dernière relation.

La relation (3) ( et la condition initiale) nous donne aisément le tableau des premiers \xi_r :

\displaystyle \begin{array}{c|l}\xi_0&t\\\hline\xi_1&t^2-t\\\hline\xi_2&2t^3-3t^2+t\\\hline\xi_3&6t^4-12t^3+7t^2-t\end{array}

D’où les premières séries \mathscr S_r :

\displaystyle \begin{array}{lcl}\displaystyle{\sum_{k=0}^\infty x^k}&=&\displaystyle{\frac 1{1-x}}\\[2ex]\displaystyle{\sum_{k=0}^\infty kx^k}&=&\displaystyle{-\frac 1{1-x}+\frac 1{(1-x)^2}}\\[2ex]\displaystyle{\sum_{k=0}^\infty k^2x^k}&=&\displaystyle{\frac 1{1-x}-\frac 3{(1-x)^2}+\frac 2{(1-x)^3}}\\[2ex]\displaystyle{\sum_{k=0}^\infty k^3x^k}&=&\displaystyle{-\frac 1{1-x}+\frac 7{(1-x)^2}-\frac {12}{(1-x)^3}+\frac 6{(1-x)^4}}\end{array}

Quelques coefficients des polynômes \xi_r

Voici quelques coefficients des polynômes \xi_r. Pour l’instant, je ne les connais pas tous(**).

Ecrivons \xi_r(t)=\sum_{i=1}^{r+1}a_{r,i}t^i. Alors

(4) \displaystyle a_{r,1}=(-1)^r,\quad a_{r,2}=(-1)^{r+1}2^r+(-1)^r, \quad a_{r,r}=-\frac 12(r+1)!, \quad a_{r,r+1}=r!

La dérivée n-ième des deux membres de (3) en t=0 nous donne la relation

(5) \xi_{r+1}^{(n)}(0)=-n\xi_r^{(n)}(0)+n(n-1)\xi_r^{(n-1)}(0)

D’un autre côté, \xi_r^{(n)}(0) vaut n!a_{r,n} si 1\leqslant n\leqslant r+1 et est nul pour les autres valeurs de n\in \mathbf N.

En faisant n=1 et n=r+2 dans (5), on obtient facilement les valeurs de a_{r,1} et a_{r,r+1}. Ensuite, avec n=r+1, on voit que r\mapsto a_{r,r} est solution de l’équation de récurrence x_{r+1}=rx_r-(r+1)!,x_1=-1, dont -\frac 12(r+1)! est visiblement la solution. Enfin, avec n=2, on voit que a_{r,2} est solution de l’équation x_{r+1}=-2x_r+(-1)^r, x_1=1, dont (-1)^{r+1}2^r+(-1)^r est la solution, comme on le voit aisément.

P.S. Je pense avoir trouvé une expression explicite des \xi_r et donc des séries \mathscr S_r. Cela sera exposé dans un billet à venir. P.L. 2/12/2017

P.S. Voilà, on trouvera ces expressions ici. P.L. 3/12/2017

__________
(*) Pour alléger l’écriture, je noterai désormais f', f'', f''', \ldots, f^{(n)},\ldots les dérivées successives d’une fonction, d’un polynôme ou d’une série (dérivée terme à terme) f.
(**) Je présente dans ce billet, quelques belles propriétés de ces polynômes.

2 réactions sur “Une remarque à propos de certaines séries de puissances I

  1. Pingback: Une remarque à propos de certaines séries de puissances II | Blog de Pierre Lecomte

  2. Pingback: Une remarque à propos de certaines séries de puissances III | Blog de Pierre Lecomte

Votre commentaire

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:

Logo WordPress.com

Vous commentez à l’aide de votre compte WordPress.com. Déconnexion /  Changer )

Photo Google

Vous commentez à l’aide de votre compte Google. Déconnexion /  Changer )

Image Twitter

Vous commentez à l’aide de votre compte Twitter. Déconnexion /  Changer )

Photo Facebook

Vous commentez à l’aide de votre compte Facebook. Déconnexion /  Changer )

Connexion à %s

Ce site utilise Akismet pour réduire les indésirables. En savoir plus sur la façon dont les données de vos commentaires sont traitées.