Une remarque à propos de certaines séries de puissances III

Le but de ce billet est de calculer les séries

\displaystyle \mathscr S_r=\sum_{k=0}^\infty k^rx^k, r\in\mathbf N

J’en ai parlé ici où j’ai par ailleurs introduit les polynômes \xi_r\in\mathbf K[t], \mathbf K\in\{\mathbf R,\mathbf C\}, dont j’ai présenté quelques propriétés ici.

Ceux-ci sont tels que \mathscr S_r=\xi_r\left(\frac 1{1-x}\right) et sont univoquement déterminés par le fait qu’ils vérifient

(1) \forall r\in\mathbf N,\quad \xi_{r+1}=t(t-1)\xi'_r

et par la condition initiale \xi_0=t. Chaque \xi_r est de degré r+1 et s’annule en 0.

La série génératrice des \xi_r

Il s’agit, par définition, de la série \displaystyle \xi_\lambda=\sum_{r=0}^\infty\xi_r\lambda^r.

Cette série vérifie une certaine équation différentielle et, grâce à celle-ci, nous allons pouvoir la calculer.

En effet, multipliant les deux membres de (1) par \lambda^{r+1} puis en sommant sur r, il vient facilement

\lambda t(t-1)\xi'_\lambda-\xi_\lambda+t=0,\quad \xi_\lambda(0)=0

Nous chercherons \xi_\lambda sous la forme \displaystyle\xi_\lambda=\sum_{k=1}^\infty u_kt^k ce qui, injecté dans l’équation différentielle, donne l’équation

\displaystyle \lambda\sum_{k=2}^\infty(k-1)u_{k-1}t^k-\sum_{k=1}^\infty(\lambda k+1)u^kt^k+t=0

Formellement(*), ceci équivaut au système

\begin{cases}\forall k>1,\quad \lambda(k-1)u_{k-1}-(\lambda k+1)u_k=0\\[2ex](\lambda +1)u_1=1\end{cases}

ce dont on déduit aisément que

\displaystyle \forall k>0,\quad u_k=(k-1)!\dfrac{\lambda^{k-1}}{(k\lambda+1)\cdots(\lambda+1)}

Ainsi que nous l’avions fait dans le premier billet mentionné au début, posons \xi_r(t)=\sum_{i=1}^{r+1}a_{r,i}t^i. Nous venons de démontrer que

\displaystyle\boxed{\forall k>0, \quad\sum_{r=k-1}^\infty a_{r,k}\lambda^r=(k-1)!\dfrac{\lambda^{k-1}}{(k\lambda+1)\cdots(\lambda+1)}}

Une formule pour \ a_{r,k}

En développant en fractions simples le membre de gauche de l’égalité encadrée, nous allons calculer les coefficients a_{r,k}.

Nous cherchons les éléments v_i de \mathbf K tels que

\dfrac{\lambda^{k-1}}{(k\lambda+1)\cdots(\lambda+1)}=\dfrac{v_1}{\lambda+1}+\dfrac{v_2}{2\lambda+1}+\cdots+\dfrac{v_k}{k\lambda+1}

C’est facile : comme les zéros du dénominateur de la fraction à décomposer sont simples, il suffit, après avoir chassé les dénominateurs dans cette égalité, d’évaluer les deux membres de l’égalité obtenue en chacun de leurs zéros. On trouve

\displaystyle\forall i\in\{1,\ldots,k\},\quad v_i=\dfrac{(-1)^{i+1}}{(i-1)!(k-i)!}

Cela étant, en utilisant la série géométrique \sum_{r=0}^\infty\lambda^r=\frac{1}{1-\lambda}, il vient

\displaystyle\dfrac{v_1}{\lambda+1}+\dfrac{v_2}{2\lambda+1}+\cdots+\dfrac{v_k}{k\lambda+1}=\sum_{r=0}^\infty\left(\sum_{i=1}^kv_i(-i)^r\right)\lambda^r

Dès lors

\displaystyle \boxed{a_{r,k}=(-1)^r\sum_{i=0}^{k-1}{k-1 \choose i}(-1)^i(i+1)^r}

et, donc,

\displaystyle \boxed{\mathscr S_r(x)=\sum_{k=0}^\infty k^rx^k=\sum_{i=1}^{r+1}\left((-1)^r\sum_{j=0}^{i-1}{i-1 \choose j}(-1)^j(j+1)^r\right)\frac 1{(1-x)^i}}

Deux formules remarquables

Dans le premier article cité plus haut, nous avions obtenu ceci :

\displaystyle a_{r,1}=(-1)^r,\quad a_{r,2}=(-1)^{r+1}2^r+(-1)^r, \quad a_{r,r}=-\frac 12(r+1)!, \quad a_{r,r+1}=r!

La seconde formule encadrée redonne facilement les deux premières égalités. Par contre, il n’est pas immédiat qu’elle redonne les deux dernières. En comparant celles-ci avec les expressions qu’elle donne de a_{r,r} et de a_{r,r+1}, nous obtenons deux égalités remarquables :

\displaystyle (-1)^r\sum_{i=1}^r\dfrac{(-1)^ii^r}{(i-1)!(r-i)!}=\dfrac{r(r+1)}2\   \& \   (-1)^{r+1}\sum_{i=1}^{r+1}\frac{(-1)^ii^r}{(i-1)!(r+1-i)!}=1

Les nombres

\displaystyle \sum_{i=1}^k\frac{(-1)^{k-i}i^r}{(i-1)!(k-i)!}

semblent avoir de belles propriétés. Pour l’instant je ne sais rien dire de plus à leur propos. Peut-être une autre fois…

😉

__________
(*) Les calculs sont menés dans le cadre des séries formelles. Leur éventuelle convergence ne sera pas étudiée ici.

2 réactions sur “Une remarque à propos de certaines séries de puissances III

  1. Pingback: Une remarque à propos de certaines séries de puissances I | Blog de Pierre Lecomte

  2. Pingback: Une remarque à propos de certaines séries de puissances II | Blog de Pierre Lecomte

Votre commentaire

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:

Logo WordPress.com

Vous commentez à l’aide de votre compte WordPress.com. Déconnexion /  Changer )

Photo Google

Vous commentez à l’aide de votre compte Google. Déconnexion /  Changer )

Image Twitter

Vous commentez à l’aide de votre compte Twitter. Déconnexion /  Changer )

Photo Facebook

Vous commentez à l’aide de votre compte Facebook. Déconnexion /  Changer )

Connexion à %s

Ce site utilise Akismet pour réduire les indésirables. En savoir plus sur la façon dont les données de vos commentaires sont traitées.