Petite remarque sur les quaternions et la dépendance linéaire II

Voici une modeste suite à cet article. Je ne pensais pas qu’elle viendrait si rapidement. Elle va dans le sens de ce que j’écrivais dans les dernières lignes du billet sans pour autant épuiser complètement le sujet, me semble-t-il. Disons que c’est un premier pas dans dans la direction que je souhaite suivre. Il n’y en aura peut-être pas d’autre car ces questions de nature topologique sont assez délicates, du moins pour moi.

Je conserve ici les notations de l’article cité, auquel je vous réfère pour les détails. En plus, pour alléger l’écriture nous conviendrons de désigner par L^* l’ensemble des éléments non nuls de tout espace vectoriel L.

Pour rappel, nous avons vu que des éléments \mathbf u,\mathbf v de l’espace vectoriel E sont linéairement dépendants et sont liés par la relation linéaire r\mathbf v+s\mathbf u=0 si, et seulement si, le produit des quaternions p=r+\mathbf u et q=s+\mathbf v est réel.

Nous allons étudier ici le produit de quaternions comme une application différentiable \mathscr P de \mathbf H_E^2 dans \mathbf H_E et, tout naturellement, nous intéresser plus particulièrement à la structure de la pré-image de l’ensemble des quaternions réels par cette application.

Comme nous allons le voir, \mathscr P est singulier en (0,0). Par contre, sa restriction \mathbf P à \mathbf H_E^{2*} est une submersion surjective. C’est donc plutôt la pré-image de \mathbf R\simeq \mathbf R+\{0\}\subset \mathbf H_E par cette restriction que nous allons étudier. Nous constaterons que c’est une variété différentiable ayant une structure assez simple.

L’application linéaire tangente de \mathscr P

Soient \xi=(p,q)\in \mathbf H_E^2 et un vecteur tangent \tau=(h,k)\in T_\xi\mathbf H_E^2\simeq \mathbf H_E^2. La dérivée de \mathscr P dans la direction de \tau est donnée par

\begin{array}{rcl}\mathscr P_{*\xi}\tau&=&\frac d{dt}(p+th)(q+tk)_{|t=0}\\[1ex]&=&pk+hq\end{array}

D’après cette formule, si \xi est nul, alors \mathscr P_{*\xi}=0 tandis que si \xi n’est pas nul, alors \mathscr P_{*\xi} est surjectif. Par conséquent, l’application \mathscr P est singulière à l’origine. De plus, comme \mathbf H_E^{2*} est un ouvert de \mathbf H_E^2, les applications linéaires tangentes à \mathbf P et à \mathscr P en chaque \xi\in \mathbf H_E^{2*} coïncident. L’application \mathbf P, qui est par ailleurs visiblement surjective, est donc une submersion.

La variété V_E

L’ensemble V_E=\mathbf P^{-1}\mathbf R est une variété plongée de \mathbf H_E^{2*} de dimension cinq.

D’après le théorème de transversalité pour les sous-variétés, il résulte en effet de ce qui précède que V_E est une variété plongée de \mathbf H_E^{2*} et qu’en plus, son espace tangent en \xi est la pré-image par \mathbf P_{*\xi} de l’espace tangent à \mathbf R en \mathbf P(\xi). Ce dernier s’identifie à \mathbf R. Par conséquent,

T_\xi V_E=\{(h,k)\in\mathbf H_E^2|pk+hq\in\mathbf R\}

De là, \dim V_E=5. En effet, si p n’est pas nul, alors T_\xi V_E est l’image de l’application linéaire

(h,a)\in\mathbf H_E\times\mathbf R\mapsto (h,-p^{-1}hq+ap^{-1})\in\mathbf H_E^2

et si q n’est pas nul, c’est celle de

(k,a)\in\mathbf H_E\times\mathbf R\mapsto (aq^{-1}-pkq^{-1},k)\in\mathbf H_E^2

On conclut en notant que ces deux applications sont injectives.

Les fibres de \mathbf P:V_E\to \mathbf R

Par définition, il s’agit des ensembles \mathbf P^{-1}\{\varphi\}, \varphi\in\mathbf R. Il est évident que si \varphi n’est pas nul, alors

\mathbf P^{-1}\{\varphi\}=\{(p,\varphi p^{-1})|p\in\mathbf H_E^*\}

et que

\mathbf P^{-1}\{0\}= \mathbf H_E^*\times\{0\}\cup\{0\}\times\mathbf H_E^*

Voici deux conséquences de ceci. La première est immédiate.

L’application (\varphi,p)\mapsto (p,\varphi p^{-1}) est un difféomorphisme de \mathbf R^*\times \mathbf H_E^* sur l’ouvert \mathbf P^{-1}\mathbf R^* de V_E.

Ensuite

L’application P:V_E\to \mathbf R n’est pas un fibré localement trivial.

En effet, si c’était un tel fibré alors il serait trivialisable car \mathbf R est contractile.
Mais alors, toutes ses fibres seraient homéomorphes. Or les fibres \mathbf P^{-1}\{\varphi\}, \varphi\in\mathbf R^*, sont connexes (elles sont homéomorphes à \mathbf H_E^*) alors que \mathbf P^{-1}\{0\} ne l’est pas(*).

Conclusions

Nous y voyons à présent un peu plus clair sur les couples d’éléments linéairement dépendants de E et les relations linéaires qui les lient. Comme on l’a vu dans le billet cité au début de cet article, ces données sont encodées dans \mathscr P^{-1}\mathbf R.

Ce qui précède montre que cet espace topologique admet une stratification naturelle, de même que V_E :

\mathscr P^{-1}\mathbf R=\{(0,0)\}\cup \underbrace{\mathbf P^{-1}\{0\}\cup\mathbf P^{-1}\mathbf R^*}_{V_E}

Contrairement à V_E, \mathscr P^{-1}\mathbf R n’est pas une variété plongée dans \mathbf H_E^2 car c’est en fait un cône, de sommet \{0\}.
Quant à \mathbf P: V_E\to\mathbf R, il s’en est fallu de peu que ce soit un fibré localement trivial. C’est la faute à la fibre particulière \mathbf P^{-1}\{0\} qui n’a pas le bon goût d’être difféomorphe aux autres. Par contre, celles-ci s’entendent bien entre elles : le fibré \mathbf P :P^{-1}\mathbf R^*\to \mathbf R^* admet une trivialisation globale canonique.

__________
(*) Si L est un espace vectoriel de dimension finie, alors L^*\times\{0\}\cup\{0\}\times L^* n’est pas connexe pour la topologie induite par L\times L. En effet, les deux fermés L^*\times\{0\} et \{0\}\times L^* partitionnent L^*\times\{0\}\cup\{0\}\times L^*.

Votre commentaire

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:

Logo WordPress.com

Vous commentez à l’aide de votre compte WordPress.com. Déconnexion /  Changer )

Image Twitter

Vous commentez à l’aide de votre compte Twitter. Déconnexion /  Changer )

Photo Facebook

Vous commentez à l’aide de votre compte Facebook. Déconnexion /  Changer )

Connexion à %s

Ce site utilise Akismet pour réduire les indésirables. En savoir plus sur la façon dont les données de vos commentaires sont traitées.