Une brève, à propos d’un logarithme qui se prend pour une exponentielle!

Comme je l’ai expliqué ici, à chaque équation différentielle isochrone est associée une application exponentielle(*).

Je rappelle sommairement ce que nous allons utiliser du matériel présenté dans ce billet.

Une équation différentielle \ddot x= f(x,\dot x)(**) est isochrone si, et seulement si, f est quadratique en h. (Ce n’est pas la définition mais une caractérisation que nous allons exploiter.) La solution maximale t\mapsto u(t,x_0,h) de cette équation qui vaut x_0\in\Omega en t=0 et dont la dérivée vaut h\in\mathbf R^n en t=0 ne dépend de t et de h que par l’intermédiaire de leur produit : il existe une fonction \exp: (x_0,h)\mapsto \exp_{x_0}(h) telle que, dans l’intervalle de définition de u,

u(t,x_0,h)=\exp_{x_0}(th)

L’application \exp est l’exponentielle associée à l’équation isochrone \ddot x= f(x,\dot x). Je ne vais pas m’étendre ici sur son domaine de définition. J’en dis quelques mots dans ce pdf mais ce ne sera pas utile pour le présent billet. Dans le texte en question, je donne divers exemples d’applications exponentielles. Ils recouvrent les notions d’exponentielle que l’on connait généralement dans l’enseignement secondaire et dans les premières années d’études scientifiques à l’université, parmi lesquelles l’exponentielle de matrices (qui est un cas particulier de l’exponentielle des groupes de Lie, pour ceux qui connaissent ceux-ci).

Sur \mathbf R, les équations isochrones sont les équations de la forme \ddot x=g(x)\dot x^2. On peut dire pas mal de choses à leur propos mais dans ce billet, nous nous contenterons de déterminer l’application exponentielle associée à l’équation isochrone \ddot x = \dot x^2.

Pour résoudre l’équation \ddot x = \dot x^2, x(0)=x_0, \dot x(0)=h nous introduisons, ce qui est classique, l’inconnue y=\dot x. Ceci transforme l’équation en question en le système équivalent

\begin{cases}\dot x=y, \quad x(0)=x_0\\\dot y=y^2, \quad y(0)=h\end{cases}

Comme on le voit, facilement, la solution maximale de l’équation \dot y=y^2, \quad y(0)=h est

y : t\in I_h\mapsto \dfrac h{1-ht}\in \mathbf R

I_h=\begin{cases}]-\infty,\frac 1h[\mathrm{\ si\ }h>0\\[1ex]\mathbf R\mathrm{\ si\ }h=0\\[1ex]]\frac 1h,+\infty[\mathrm{\ si\ }h <0\end{cases}

En fait,

t\in I_h \Longleftrightarrow th<1

De là,

x : t\in I_h\mapsto x_0+\displaystyle{\int_0^t}\frac h{1-hu}du=x_0-\ln(1-ht)

et, donc, l’exponentielle associée à l’équation \ddot x=\dot x^2 est l’application

\exp : (x_0,h)\in\mathbf R\times]-\infty,1[\mapsto x_0+\ln\frac 1{1-h}\in \mathbf R

En particulier, pour l’équation considérée,

\exp_0(h)=\ln\frac 1{1-h}

est un logarithme !

__________
(*) Dans le billet en question, je ne parle que d’équations définies sur un ouvert de \mathbf R^n mais un des cadres les plus généraux où les notions d’équations isochrones et d’exponentielles associées sont disponibles est celui des variétés différentielles.
(**) Où f: (x,h)\in\Omega\times\mathbf R^n \mapsto f(x,h)\in\mathbf R^n est de classe C^k, avec \Omega un ouvert de \mathbf R^n et k>1.

2 réactions sur “Une brève, à propos d’un logarithme qui se prend pour une exponentielle!

  1. Bonjour Pierre, je trouve qu’il est aussi instructif de dessiner le portrait de phase du système d’équations (dans le plan x,y): on dessine d’abord les composantes selon l’axe des x de la vitesse, puis les composantes de l’axe des y et on ensuite le champ de vecteurs qui en est la résultante. Il est facile alors d’imaginer à quoi ressemblent les lignes intégrales. Certains logiciels font cela en un clin d’oeil (voir par exemple mathstud.io: entrer VectorPlot(y,y^2) ), mais j’aime bien aussi faire cela à la main, cela permet de mieux saisir les limitations. Mais ce n’est sans doute pas le propos principal de ton billet…
    Amicalement,
    Thierry

    • Bonjour Thierry, et merci pour ton intervention!

      J’ai effectué la commande VectorPlot(y,y^2) et j’ai effectivement vu apparaitre instantanément l’image du champ de vecteurs. C’est très amusant et on visualise bien les trajectoires. Mais effectivement, ce n’était pas directement lié à l’objectif de mon billet. Je tenais simplement à exhiber une application exponentielle qui ne soit pas un avatar de celle d’un groupe de Lie. Le fait qu’elle se calcule à l’aide de \ln m’a donné l’idée du titre se voulant un rien humoristique et accrocheur.

      Cela dit, je ne connaissais pas mathstud.io! Merci aussi d’avoir attiré mon attention dessus!

      Amicalement,

      Pierre

Votre commentaire

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:

Logo WordPress.com

Vous commentez à l’aide de votre compte WordPress.com. Déconnexion /  Changer )

Image Twitter

Vous commentez à l’aide de votre compte Twitter. Déconnexion /  Changer )

Photo Facebook

Vous commentez à l’aide de votre compte Facebook. Déconnexion /  Changer )

Connexion à %s

Ce site utilise Akismet pour réduire les indésirables. En savoir plus sur la façon dont les données de vos commentaires sont traitées.