Une brève sur les plans affines euclidiens et orientés II

Dans ce billet auquel je vous renvoie pour les définitions et les notations, je faisais observer la chose suivante : le cercle de centre A et passant par le point B est l’ensemble

\{(1-\lambda)A+\lambda B|\lambda\in S^1\}

C’était alors juste une simple observation sur laquelle le billet s’achève. Dans le présent billet, nous allons l’exploiter pour établir la propriété (bien connue) suivante

Quatre points X_1,X_2,X_3,X_4 de \mathcal E sont alignés ou cocycliques si, et seulement si, le rapport anharmonique [X_1,X_2,X_3,X_4] est réel.

Pour rappel, si A,B sont deux points distincts, alors X_k est une combinaisons affine de ces points : X_k=(1-\lambda_k)A+\lambda_k B et(*)

\begin{array}{lcr}[X_1,X_2,X_3,X_4]&=&\dfrac{\overrightarrow{X_1X_3}}{\overrightarrow{X_3X_2}}\ \dfrac{\overrightarrow{X_4X_2}}{\overrightarrow{X_1X_4}}\\[3ex]&=&\dfrac{\lambda_3-\lambda_1}{\lambda_2-\lambda_3}\dfrac{\lambda_2-\lambda_4}{\lambda_4-\lambda_1}\\[3ex]&=&[\lambda_1,\lambda_2,\lambda_3,\lambda_4]\end{array}

Nous allons à présent prouver la proposition, en commençant par établir que la condition est nécessaire.

\boxed{\mathrm A}

\bullet Supposons les X_k situés sur une droite et prenons A et B sur celle-ci. Les abscisses affines \lambda_k sont alors des nombres réels de même, dès lors, que le birapport [\lambda_1,\lambda_2,\lambda_3,\lambda_4].

\bullet Supposons les X_k situés sur un cercle et prenons pour A le centre de ce dernier et pour B un quelconque de ses points. Les modules des \lambda_k valent 1 de sorte que le conjugué du birapport des X_k vaut

[\overline{\lambda}_1,\overline{\lambda}_2,\overline{\lambda}_3,\overline{\lambda}_4]=[\frac{1}{\lambda_1},\frac{1}{\lambda_2},\frac{1}{\lambda_3},\frac{1}{\lambda_4}]=[\lambda_1,\lambda_2,\lambda_3,\lambda_4]

Ce birapport est donc réel.

\boxed{\mathrm B}

Nous supposons à présent que [X_1,X_2,X_3,X_4] est réel et nous discutons sur le fait que X_1,X_2,X_3 sont alignés ou sont les sommets d’un triangle.

\bullet Dans le premier cas, nous prenons A et B sur la droite X_1X_2. Les abscisses affines \lambda_1,\lambda_2,\lambda_3 sont réelles et, en exprimant que [\lambda_1,\lambda_2,\lambda_3,\lambda_4] est égal à son conjugué, on obtient immédiatement \overline{\lambda}_4=\lambda_4 : \lambda_4 est réel et X_4 appartient à la droite AB.

\bullet Dans le second cas, X_1,X_2,X_3 sont sur le cercle circonscrit au triangle dont ils sont les sommets. Nous prenons alors pour A le centre de ce cercle et pour B un quelconque de ses points. Les modules des nombres \lambda_1,\lambda_2,\lambda_3 valent 1. Cette fois en exprimant que [\lambda_1,\lambda_2,\lambda_3,\lambda_4] est égal à son conjugué, on obtient |\lambda_4|^2=1 après un tout petit peu de calcul. Ainsi |\lambda_4|=1 et le point X_4 appartient au cercle en question.

Voilà, ce billet s’achève ici.

😉

__________
(*) Les \overrightarrow{X_kX_l} sont des multiples de \overrightarrow{AB} et le rapport de deux d’entre eux est celui de ces multiples.

Votre commentaire

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:

Logo WordPress.com

Vous commentez à l’aide de votre compte WordPress.com. Déconnexion /  Changer )

Photo Google

Vous commentez à l’aide de votre compte Google. Déconnexion /  Changer )

Image Twitter

Vous commentez à l’aide de votre compte Twitter. Déconnexion /  Changer )

Photo Facebook

Vous commentez à l’aide de votre compte Facebook. Déconnexion /  Changer )

Connexion à %s

Ce site utilise Akismet pour réduire les indésirables. En savoir plus sur la façon dont les données de vos commentaires sont traitées.