A propos d’un empilement infini de radicaux

Le but de ce billet est de calculer l’empilement infini de radicaux e_{a,b} où la suite a est périodique de période 2 et b est la suite constante \mathbf{1}, celle dont les éléments valent tous 1(*).

Nous notons p la valeur commune des éléments de rang pair de a et q celle des éléments de rang impair, où p, q sont des nombres réels strictement positifs. L’empilement e_{a,b} est donc

e:=\sqrt{p+\sqrt{q+\sqrt{p+\sqrt{q+\cdots}}}}

Nous allons prouver que

L’empilement e est égal à la plus grande racine de l’équation

(1) (x^2-p)^2-x-q=0

La méthode

Nous montrerons d’abord, \boxed A, que l’équation

(x^2-p)^2-x-q=0

admet une seule racine (positive) plus grande que \sqrt p, \ \xi (c’est sa plus grande racine).

Ensuite, \boxed B, nous construirons une suite c:n\in\mathbf N\mapsto [0,+\infty[ à laquelle est associée une suite constante d’approximations u(c) de e. Ceci prouve que la limite de la suite u(\mathbf 0), la valeur de e, est un nombre réel.

Nous montrerons enfin, \boxed C, que \lim u(\mathbf 0)=\xi, ce qui sera alors facile.

Nous noterons f la fonction.

x \mapsto (x^2-p)^2-x-q=x^4-2px^2-x+p^2-q

Nous l’étudierons principalement dans ]0,+\infty[.

Voici un aperçu du graphe de f lorsque p = 1 et q = 0.8. C’est un cas où la fonction possède deux zéros positifs. Ils sont séparés par \sqrt p.

Voici un exemple du second cas possible, celui où f ne possède qu’un seul zéro positif. Ici, p=\frac 12 et, comme plus haut, q=0.8.

Les détails

\boxed A

Nous allons utiliser les dérivées premières et secondes de f :

\begin{cases}f'(x)=4x^3-4px-1\\[1ex] f''(x)=12x^2-4p\end{cases}

La dérivée seconde s’annule en \pm \sqrt{\frac{p}{3}}. Elle est strictement négative dans ]0,\sqrt{\frac{p}{3}}] et strictement positive dans ]\sqrt{\frac{p}{3}},+\infty[. Comme f'(0)=-1, f' est strictement décroissant et négatif dans ]0,\sqrt{\frac{p}{3}}] et strictement croissant au-delà de \sqrt{\frac{p}{3}}. En particulier, f' s’annule une fois exactement dans ]0,+\infty[, au-delà de \sqrt{\frac{p}{3}}. Notons \alpha ce zéro.

On voit ainsi que la fonction f atteint un minimum local en \alpha. Elle décroit strictement dans ]0,\alpha[ puis croit strictement dans [\alpha,+\infty[. Nous allons voir que le minimum local f(\alpha) est strictement négatif. Dès lors, f admet un unique zéro dans ]\alpha,+\infty[, disons \xi. De plus, si f(0)=p^2-q \sqrt p\geqslant 0, alors f possède un second zéro positif ou nul, \eta. Nous vérifierons que lorsqu’il existe, \eta < \sqrt p.

\bullet Nous considérons \alpha comme une fonction de p. D’après le théorème des fonctions implicites, elle est de classe C^\infty. En effet

f''(\alpha)=12(\alpha^2-\frac p3)>0

Sa dérivée s’obtient en dérivant la relation f'(\alpha)=0 par rapport à p, ce qui donne

\alpha'=\dfrac{\alpha}{3\alpha^2-p}

Notons également que f'(\alpha)=0 montre que

\alpha^2-p=\frac 1{4\alpha}>0

On a alors

\dfrac{d(f\circ\alpha)}{dp}=f'(\alpha)\alpha'-2(\alpha^2-p)=-\dfrac 1{2\alpha}<0

Le minimum de f dans ]0,+\infty[ est donc strictement décroissant par rapport à p. Mais, \alpha^3(0)=\frac 14 et, du coup(**),

f(\alpha(0))=-\frac 34\alpha(0)-q<0

Au total, f(\alpha) est bien strictement négatif.

\bullet Le zéro \xi de f est également une fonction de classe C^\infty de p car f'(\xi)>0. On obtient aisément

\xi'=\dfrac{2(\xi^2-p)}{f'(\xi)}

Avec cette formule, on voit que la dérivée de la fonction p\mapsto \xi^2-p vaut

2\xi\xi'-1=\dfrac{4\xi(\xi^2-p)-f'(\xi)}{f'(\xi)}=\dfrac 1{f'(\xi)}

Cette fonction est donc strictement croissante. Sa limite lorsque p tend vers 0 est positive. Elle est donc strictement positive en les p strictement positifs. Au total, \xi>\sqrt p comme annoncé.

\bullet On démontre de façon semblable que, lorsque \eta existe, c’est-à-dire quand p^2\geqslant q, il est strictement inférieur à \sqrt p. Cette fois la dérivée de p\mapsto \eta^2-p est strictement négative car f'(\eta)<0. De plus, il est clair que \eta(\sqrt q) = 0. Je ne vais pas détailler.

\boxed B

Pour rappel, la suite d’approximations u(c) de notre empilement associée à une suite c:n\in\mathbf N\mapsto [0,+\infty[ est la suite dont voici les premiers éléments

c_0,\ \sqrt{p+c_1},\ \sqrt{p+\sqrt{q+ c_2}},\ \sqrt{p+\sqrt{q+ \sqrt{p+ c_3}}}, \ldots

(de façon générale, c_n figure immédiatement sous le n-ième radical.)

Puisque \xi >0, \xi^2>p et (\xi^2-p)^2-\xi-q=0, on a

\xi=\sqrt{p+\sqrt{q+\xi}}

Il est alors immédiat de voir que pour la suite c définie par

n\mapsto\begin{cases}\xi&\mathrm{\ si\ } n\mathrm{\ est\ pair}\\ \xi^2-p&\mathrm{\ sinon}\end{cases}

la suite u(c) est la suite constante \xi,\xi,\xi,\ldots

\boxed C

Vu \boxed{B}, la suite u(\mathbf 0) converge vers un nombre réel \gamma_0>0 (voir par exemple ce billet) qui est la valeur attribuée à notre empilement e. Mais, clairement, nous avons

u_{n+2}(\mathbf 0)=\sqrt{p+\sqrt{q+u_n(\mathbf 0)}}

En passant à la limite, il vient \gamma_0=\sqrt{p+\sqrt{q+\gamma_0}}.

En élevant les deux membres au carré, nous obtenons \gamma_0^2-p=\sqrt{q+\gamma_0}. En particulier \gamma_0^2-p>0. Par une élévation au carré supplémentaire, nous obtenons enfin f(\gamma_0)=0.

Vu ce qui précède, nous avons donc \gamma_0=\xi et

e:=\sqrt{p+\sqrt{q+\sqrt{p+\sqrt{q+\cdots}}}}=\xi

En particulier,

\lim_{n\to+\infty}\underbrace{\sqrt{p+\sqrt{q+\sqrt{p+\sqrt{q+\cdots}}}}}_{n \mathrm{\ radicaux}}=\xi

P.S. Un participant du forum M@TH en Ligne, Tournesol, a trouvé une méthode plus expéditive pour prouver que f possède une unique racine strictement plus grande que \sqrt p. En fait, il est beaucoup plus expéditif, entre autre pour montrer que le minimum de f dans ]0,+\infty[ est strictement négatif. Après être arrivé aux même conclusions que moi concernant la dérivée première f', il conclut que f est strictement décroissant sur [\sqrt p,\alpha] et strictement croissant sur ]\alpha,+\infty[. Comme f(\sqrt p)=-\sqrt p-q<0, f(\alpha) est également strictement négatif. Le reste est alors clair. P.L. 06/12/2018

P.S. J’aurais dû tester le résultat sur le cas où q=p et vérifier qu’il rend bien dans ce cas la valeur de e que nous avons calculée dans ce billet. Cette valeur est la racine positive de l’équation x^2-x-p=0 i.e. \frac 12\left(1+\sqrt{4p+1}\right). Cela se fait facilement. Lorsque q=p, x^2-x-p est un facteur du membre de gauche de l’équation (1) :

(x^2-p)^2-x-p=(x^2+x-p+1)(x^2-x-p)

Les quatre racines de l’équation (1) sont alors

\frac 12\left(-1\pm\sqrt{4p-3}\right)\quad \& \quad \frac 12\left(1\pm\sqrt{4p+1}\right)

et la plus grande est \frac 12\left(1+\sqrt{4p+1}\right), la valeur attendue pour e. P.L. 07/11/2020

__________
(*) Les articles concernant les empilements infinis de radicaux où vous trouverez les notations et les résultats que je vais utiliser ici se trouvent sous la rubrique Empilements infinis de radicaux du sommaire.
(**) On prend en réalité la limite pour p tendant vers zéro par valeurs positives puisqu’en principe p est supposé strictement positif. Par abus de notations, on note \alpha(0), f(\alpha(0)), \ldots ces limites.

2 réactions sur “A propos d’un empilement infini de radicaux

  1. Bonjour, je viens seulement de lire cet article. Je veux juste signaler deux petites fautes typographiques : lors de la définition de f au début de l’article, le premier terme en x de la parenthèse n’est pas élevé au carré. C’est une inattention car le reste du raisonnement est correct. Ensuite, dans l’utilisation des dérivées de f, à un moment, il manque un a à négatif.
    Les autres parties de l’article sont excellentes, je trouve juste dommage toutes les publicités qui les ponctuent.
    A bientôt.

  2. Merci pour vos remarques judicieuses!
    Je viens de corriger les erreurs typographiques.
    Je suis désolé pour les publicités. Je ne les contrôle pas. Elles sont le prix à payer pour pourvoir disposer du blog gratuitement.

Votre commentaire

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:

Logo WordPress.com

Vous commentez à l’aide de votre compte WordPress.com. Déconnexion /  Changer )

Image Twitter

Vous commentez à l’aide de votre compte Twitter. Déconnexion /  Changer )

Photo Facebook

Vous commentez à l’aide de votre compte Facebook. Déconnexion /  Changer )

Connexion à %s

Ce site utilise Akismet pour réduire les indésirables. En savoir plus sur la façon dont les données de vos commentaires sont traitées.