Une brève sur les plans affines euclidiens et orientés

Le présent billet transpose rapidement aux plans affines euclidiens et orientés ce que je présentais dans cet article consacré aux plans vectoriels euclidiens et orientés.

Je ne prétends nullement être original dans ce qui suit. Je veux simplement mettre en évidence un fait amusant que j’ignorais jusqu’il y a peu(*).

Considérons un plan affine euclidien orienté \mathcal E. Par définition d’un tel plan, l’espace vectoriel E qui le dirige est un plan vectoriel muni d’un produit scalaire et d’une orientation.

Comme je l’ai expliqué dans l’article cité ci-dessus, on fait de E une droite vectorielle complexe E_\mathbf C en conservant l’addition de E et en posant

\forall a,b\in \mathbf R,\forall \mathbf u\in E,\quad (a+ib)\mathbf u=a\mathbf u+bJ\mathbf u

J est la rotation (vectorielle) d’angle \pi/2.

L’espace affine \mathcal E devient alors une droite affine complexe \mathcal E_\mathbf C. Ses translations sont celles de \mathcal E et ses combinaisons affines sont définies de façon classique : si la somme de a_1,\ldots,a_p\in\mathbf C vaut 1 et si P_1,\ldots, P_p \in\mathcal E, alors, pour tout point O,

\displaystyle{\sum_{k=1}^p}a_kP_k=O+\sum_{k=1}^pa_k\overrightarrow{OP_k}

(Avec la relation de Chasles, on montre facilement que le membre de droite de cette égalité ne dépend pas de O.)

Soient alors des points distincts A et B de \mathcal E_\mathbf C.

L’ensemble

\{(1-\lambda)A+\lambda B|\lambda\in\mathbf R\}

est la droite réelle (i.e. de \mathcal E) passant par ces points tandis que

\{(1-\lambda)A+\lambda B|\lambda\in\mathbf C\}

est la droite complexe passant par ces points, c’est-à-dire \mathcal E_\mathbf C tout entier.

Voici alors l’objet qui est à l’origine de ce billet :

\{(1-\lambda)A+\lambda B|\lambda\in S^1\}

S^1 est le cercle trigonométrique, i.e. l’ensemble des nombres complexes dont le module vaut 1. Cet ensemble est le cercle de \mathcal E de centre A passant par B.

En effet, d’une part

(1-\lambda)A+\lambda B=A+\lambda\overrightarrow{AB}

et, d’autre part, dans E, les multiplications par les éléments de S^1 sont les rotations vectorielles.

Je trouve amusant de décrire les cercles comme des ensembles de combinaisons affines de deux points, au même titre que les droites et leurs segments.

Nous en resterons là! 😉

__________
(*) Ignorance bien regrettable mais,voilà, je n’utilise pratiquement jamais les espaces affines complexes.

Une réaction sur “Une brève sur les plans affines euclidiens et orientés

  1. Pingback: Une brève sur les plans affines euclidiens et orientés II | Blog de Pierre Lecomte

Votre commentaire

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:

Logo WordPress.com

Vous commentez à l’aide de votre compte WordPress.com. Déconnexion /  Changer )

Image Twitter

Vous commentez à l’aide de votre compte Twitter. Déconnexion /  Changer )

Photo Facebook

Vous commentez à l’aide de votre compte Facebook. Déconnexion /  Changer )

Connexion à %s

Ce site utilise Akismet pour réduire les indésirables. En savoir plus sur la façon dont les données de vos commentaires sont traitées.